PHYS1000 — The Physical Universe

Course code: PHYS 1000

Title: The Physical Universe

Number of hours, credits: 3 class hours, 3 credits

Catalog Description:

This course is designed to introduce the physical concepts that explain the workings of the universe to non-science majors. The use of mathematics is limited and subordinate to the physical concepts being addressed. Examples from daily life are used to both illustrate the physical concepts and make them relevant to students. Laboratory exercises are performed in the classroom to explain the scientific method and to allow students to learn how to perform experiments and compose a lab report.

Pre/Co-requisites: MAT1175 or MAT1190 or higher

Recommended or typical texts: The Physics of Everyday Phenomena, Griffith, 7th Edition

Sample sequence of topics and approximate time all	llocations:
--	-------------

Week	Lecture	Lab	Chapters
1	Scientific Method, Motion		1,2
2	Falling Object, Newtons Laws 3,		3,4
3	Gravity, Circular Motion	Free Fall	5
4	Energy, Momentum		6, 7
5	Fluids, Heat	Energy Conservation	9, 10
6	Entropy		11
7	Electrostatics, Circuits	Calorimetry	12, 13
8	Magnets, Electromagnetism		14
9	Waves, Light	Induction	15,16
10	Optics, Image formation		17
11	The atom, spectra, quantum mechanics	Lenses	18
12	Nuclear physics, radioactive decay		19
13	Relativity, special and general		20
14	Particle physics, Cosmology, superconductors		21
15	Review, Final		All

Intended learning outcomes:

Course specific:

Outcomes	Method of assessment
For successful completion of the course,	Instructional Activity, Evalu-
students should be able to:	ation Methods and Criteria
Understand velocity, acceleration, Newton's laws	Laboratory reports and exams
of motion, and forces such as gravity	
Display a comprehension of work, energy, momen-	Laboratory reports and exams
tum and their conservation laws	
Understand fluids, heat and the second law of	Laboratory reports and exams
thermodynamics	
Understand electrical forces, voltage, electric cir-	Laboratory reports and exams
cuits and magnetism	
Display an understanding of waves, light, sound,	Laboratory reports and exams
lenses and mirrors	
Understand the structure of the atom and nuclear	Laboratory reports and exams
forces	
Have an appreciation of relativity, particle physics	Laboratory reports and exams
and cosmology	

General Education:

Outcomes	Method of assessment
For successful completion of the course,	Instructional Activity, Evalu-
students should be able to:	ation Methods and Criteria
Apply the scientific method to explore natural	Laboratory reports and exams
phenomena, including hypothesis development,	
observation, experimentation, measurement, data	
analysis, and data presentation	
Use the tools of a scientific discipline to carry out	Laboratory reports
collaborative laboratory investigations	
Gather, analyze, and interpret data and present	Laboratory reports
it in an effective written laboratory or fieldwork	
report.	
Identify and apply research ethics and unbiased	Laboratory reports
assessment in gathering and reporting scientific	
data.	

Scope of assignments and other course requirements: Students will prepare homework and laboratory reports. There will be five laboratory exercises during the semester which will be written up and submitted as laboratory reports. There will be two exams during the semester and a final exam at the end.

Grading Rubric - The following rubric describes how lab reports will be graded, exams will cover the material as described in the table above.

Percentage	Section	Goal
20%	Introduction and Procedure	Understand a laboratory manual, follow a
		procedure.
20%	Data	Carry out collaborative laboratory inves-
		tigation, apply unbiased assessment in
		gathering an reporting data.
20%	Analysis	Analyze and interpret data and present it
		in effective manner.
20%	Questions	Understand relevant theory as applied to
		this experiment.
20%	Conclusions	Apply scientific method including hypoth-
		esis testing, data analysis and data presen-
		tation.

Method of grading:

Students will be evaluated though laboratory reports and exams. The final grade will be based on a weighted average of the grades from the reports and exams as follows:

Two Exams 40% Final Exam 25% Lab Reports 35%

College academic integrity policy:

Students and all others who work with information, ideas, texts, images, music, inventions, and other intellectual property owe their audience and sources accuracy and honesty in using, crediting, and citing sources. As a community of intellectual and professional workers, the College recognizes its responsibility for providing instruction in information literacy and academic integrity, offering models of good practice, and responding vigilantly and appropriately to infractions of academic integrity. Accordingly, academic dishonesty is prohibited in The City University of New York and at New York City College of Technology and is punishable by penalties, including failing grades, suspension, and expulsion.

College Policy on Absence/Lateness

A student may be absent without penalty for 10% of the number of scheduled class meetings during the semester as follows:

Class Meets Allowable Absences 1 time/week 2 classes 2 times/week 3 classes 3 times/week 4 classes

Date of most recent revision of this document: October 17, 2012

Technology statement:

Before entering the course, students should be familiar with the use of a scientific calculator. During the course students will learn to use MS Word (equation editor, tables and inserting figures) and MS Excel (spreadsheet calculations and graphing).